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Rayleigh-Bénard convection in binary mixtures with separation ratios near zero
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We present an experimental study of convection in binary mixtures with separation ratios ¥ close to
zero. Measurements of the Hopf frequency for ¥ <0 were used to determine the relationship between ¥
and the mass concentration x with high precision. These results are consistent with but more precise
than earlier measurements by conventional techniques. For ¥ >0, we found that the pattern close to on-
set consisted of squares. Our data give the threshold of convection 7, =R_. /R (R, is the critical Ray-
leigh number of the mixture and R, that of the pure fluid) from measurements of the refractive-index
power of the pattern as revealed by a very sensitive quantitative shadowgraph method. Over the range
¥ $0.011, corresponding to r, R 0.2, these results are in good agreement with linear stability analysis.
The measured refractive-index power varies by six orders of magnitude as a function of r and for R 0.55
is in reasonable agreement with predictions based on the ten-mode Lorenz-like Galerkin truncation of
Miiller and Liicke [H. W. Miiller and M. Liicke, Phys. Rev. A 38, 2965 (1988)]. For smaller r, the model
predicts a cancellation between contributions to the refractive index from concentration and tempera-
ture variations, which does not seem to occur in the physical system. Determinations of the wave num-
bers of the patterns near onset are consistent with the theoretically predicted small critical wave num-
bers at positive W. As r approaches one, we find that g approaches the critical wave number g.,=~3 of
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the pure fluid.

PACS number(s): 47.20.Bp, 47.54.+r, 47.20.Ky, 47.27.Te

I. INTRODUCTION

Convection in a thin horizontal layer of a single-
component fluid heated from below, known as Rayleigh-
Bénard convection [1], has long been used as one of the
model systems for the study of pattern formation. The
phenomena that are observed depend on an external con-
trol parameter

d3AT
R= Big

KV

, (1.1

which is known as the Rayleigh number. Here B, is the
isobaric thermal expansion coefficient, g the acceleration
of gravity, d the thickness of the fluid layer, « the thermal
diffusivity, and v the kinematic viscosity. R can readily
be changed in an experiment by changing the applied
temperature difference AT. Increasing R will increase
the destabilizing density gradient associated with the
temperature gradient, since the less (more) dense fluid
will be located at the bottom (top) of the sample. Con-
vection will first occur when R exceeds a critical value
R ,=1708, and for larger R various flow patterns will
evolve. Precisely what occurs depends also on the
Prandtl number

o=v/Kk , (1.2)

which is a property of the fluid and is thus not as readily
adjusted in a given experiment. An impression of the
diversity of the phenomena that are encountered can easi-
ly be obtained by a glance at some of the recent literature
[2-10].

Convection in binary mixtures can reveal numerous
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additional pattern-formation phenomena that do not
occur in pure fluids [11]. In this system, there are two
contributions to the density gradient. One of them comes
from the ordinary thermal expansion of the fluid at con-
stant pressure P and mass concentration x, as quantified
by the expansion coefficient

Bi=—(1/p)3p/dT)p, -

When heating is from below, this contribution is destabil-
izing when 3, > 0, which is the usual case. The other con-
tribution is due to the density variation resulting from the
concentration gradient, which is induced by the imposed
temperature gradient. Its magnitude depends on the
solutal expansion coefficient

,=—(1/p)(3p/3x)p 1 ,

as well as on the Soret coefficient S, and it can be stabil-
izing or destabilizing, depending on the particular mix-
ture that is used. The net effect of the concentration gra-
dient on the stability of the system is described by the
separation ratio

(1.3a)

(1.3b)

B,

v B, x(1—x)Sy .
The value of ¥ depends on the particular fluid mixture
and can be positive or negative. It can be varied over a
wide range [12] by simply changing the concentration.
When ¥ <0, the induced concentration gradient is stabil-
izing and in part counteracts the destabilizing density
gradient due to 3,. In that case, the threshold is elevated,
i.e.,, R,>R_=1708. It is possible for the concentration
gradient to temporally lag behind the thermal gradient,

(1.4)
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leading to oscillations. This interesting phenomenon is
responsible for the existence of traveling waves and much
of what has been studied in binary mixtures over the past
decade [11]. On the other hand, when ¥ >0, both the
concentration gradient and the thermally induced density
gradient are destabilizing and the Soret effect leads to a
lowered threshold for the onset of convection, i.e., to
R, <R_,,=1708. The pattern at onset is then expected to
be time independent. Although there have been some
early experiments in this parameter range [13-16] this
case has had far less attention than the one with ¥ <O.
The present paper deals primarily with mixtures that
have positive .

It turns out that there are good reasons why the range
of positive W has been relatively neglected by experimen-
talists. First, it is fair to say that the variety of phenome-
na that occur is not as great as it is for negative ¥, al-
though a number of interesting effects are expected
nonetheless. One of them is that, on the basis of linear
stability analysis, the characteristic wave number of the
pattern at onset is expected to become small as ¥ in-
creases above zero [17-22]. In the ideal laterally infinite
system with rigid, impermeable boundaries, the wave
number at onset is predicted to vanish at [19,21,23]

Vo=L/(%—L) (1.5a)
and [17,21]

R (¥,)=6LL /Y, . (1.5b)
Here

L=D/k~1072 (1.6)

is the Lewis number and D is the mass diffusivity. Wave
numbers smaller than those characteristic of convection
in a pure fluid near onset have been observed in previous
experiments at positive W [14—16] albeit only well above
the actual bifurcation where the prediction mentioned
above really does not apply and where the choice of a
particular wave number is a wave-number-selection prob-
lem that is essentially unsolved theoretically. Another in-
teresting effect is that, for ¥ < ¥, the pattern immediate-
ly above onset is predicted to be one of squares [21,24].
This prediction is consistent with experimental evidence
[14-16,25] and numerical calculations [26] well above
the onset of convection, but prior to the present work
there was no direct experimental determination of the
flow pattern close to the bifurcation point. The oc-
currence of squares can quite generally be attributed to
the impermeability of the boundaries to one of the fluxes
[14,21], in this case the concentration flux. Similarly,
squares occur in convection of a simple fluid when the
boundaries are insulating, i.e., impermeable to the heat
flux [27-30]. In the present paper we will present mea-
surements of the wave number relatively close to onset
and determinations of the pattern immediately above on-
set, which agree with the theoretical predictions.

The other reason for the relative scarcity of experimen-
tal information is the great difficulty of making quantita-
tive or even qualitative measurements close to onset when
V¥ is positive. The problem is associated with the fact

DOMINGUEZ-LERMA, AHLERS, AND CANNELL 52

that, in liquid mixtures, the time scale of mass diffusion is
longer by two orders of magnitude than that of heat
diffusion. This is quantified by .£, which is equal to the
ratio of these two time scales. An obvious consequence is
that the establishment of a steady state can take a very
long time. However, more serious is the fact that, even in
steady state, the small .L leads to extremely feeble, nearly
undetectable, convective flows in the so-called “Soret re-
gime” between R, and R,,. There the flow is driven pri-
marily by the concentration gradients. Since these are es-
tablished very slowly and since any hydrodynamic flow
tends to eliminate them, the induced velocities are very
small indeed even well above threshold. This situation
changes quickly when R passes R,, where the usual
Rayleigh-Bénard mechanism is operative. In this “Ray-
leigh regime” patterns are easily discernable, for instance,
by standard shadowgraph methods and the heat trans-
port associated with the convection is readily measured.
For R significantly below R, however, the hydrodynam-
ic contribution to the heat transport cannot be measured
by known experimental techniques and the patterns here-
tofore had not been determined.

In the present work we refined the shadowgraph tech-
nique to the point where we could detect patterns involv-
ing relative variations in the refractive index that were
smaller than one part in 10°. This enabled us to detect
and measure the amplitude of patterns immediately
above the Soret onset at R, over the range 0 SW¥ <0.011.
As V¥ increased, we used thinner cells so as to maintain a
reasonable value for AT, as the critical Rayleigh number
decreased. Our results for R, agree with linear stability
analysis. In our parameter range we found that squares
are the stable planform near onset. Also consistent with
linear theory, we measured a wave number near onset
that is smaller than that for a pure fluid.

II. EXPERIMENTAL APPARATUS AND METHOD

The apparatus is shown schematically in Fig. 1. The
lower portion depicts the cylindrical container that ac-
commodated the cell in its central region. The upper
portion shows the optical shadowgraph system that was
used to visualize the flow.

Temperature-controlled water was circulated ax-
isymmetrically in the container, as indicated by the ar-
rows in the figure. It entered from below and was divert-
ed around a cylindrical can that enclosed the cell. It then
passed through the flow distributor, a hollow donutlike
ring that was built to deliver the water symmetrically
onto the cell’s top surface by means of 32 thin grooves
machined into its lower surface. For most of the experi-
ments at positive ¥ we used, in addition to the grooves, a
set of turrets on top of the flow distributor to redirect the
flow down to the center of the cell as shown. However,
these turrets turned out to be responsible for a small in-
crease in the radial gradient of the cell’s top temperature
and were eliminated in the experiments carried out at
negative W. The water was recirculated close to the la-
teral wall of the container, thus providing overall protec-
tion against temperature fluctuations of the laboratory.
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FIG. 1. Schematic drawing of the apparatus.

This apparatus is similar to one described elsewhere [31],
except that its lateral size is somewhat larger and that it
is constructed primarily from stainless steel instead of
aluminum.

In order to assess how constant and symmetric the
temperature was at the top surface of the sapphire plate,
we translated a small thermistor mounted in a glass tube
across that surface. Although the temperature distribu-
tion was azimuthally symmetric within about 1 mK,
there was a radial gradient of about 4 mK/cm with the
turrets in place and about 1 mK/cm without them when
the. vertical temperature difference across the cell was
3.5°C. Because of the high conductivity of sapphire, the
temperature at the top of the sample (bottom of the sap-
phire) was somewhat more uniform.

We used three cylindrical cells. Their top and bottom
surfaces were formed by an optically flat sapphire and a
silver plate that had diameters of 10.16 and 8.89 cm and
were 0.953 and 0.71 cm thick, respectively. These ma-
terials were chosen because of their large thermal con-
ductivities as compared to those of the fluid mixtures.
The silver-plate surface that was in contact with the mix-
ture was diamond machined to serve as a mirror for the
shadowgraph. Its other flat surface had a metal-film
heater glued to it.

A high-density polyethylene (HDPE) ring sandwiched
between the two plates defined the fluid layer’s lateral
boundary. A Viton O ring, stretched around the HDPE
ring, was used to seal the cell. Sealing was done by push-
ing the silver plate from below by means of six screws
evenly spaced on a circle directly below the O ring. We
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built cells with heights of d =0.329, 0.240, and 0.160 cm,
diameters of 6.94, 6.35, and 6.94 cm, and thus radial as-
pect ratios of 10.6, 13.2, and 21.8, respectively. They will
be referred to as cells 1, 2, and 3, respectively. The
thinner cells made the shadowgraph method more sensi-
tive (see Sec. III A below) and allowed us to visualize very
weak flows at the larger values of ¥. As determined by
interferometry, the cell heights were constant to better
than =1 pum over the circular area occupied by the fluid
layer.

HDPE was used for the cell’s lateral boundary for two
reasons. First, it is quite impermeable to ethanol and wa-
ter as compared with other plastics. This impermeability
helped to maintain the concentration of the mixture con-
stant in time. Second, HDPE has a thermal conductivity
that is very close to those of the fluid mixtures that we
used. This similarity helped to reduce the horizontal gra-
dient caused by the sapphire’s finite thermal conductivity
and the mismatch of conductivities between the cell wall
and the mixture [32,33]. We carried out steady-state
two-dimensional simulations of the temperature profiles
of the cells [7] to estimate the magnitude of the radial
gradient. The heat-conduction equation was integrated
for the rectangular vertical cross section of the cell,
which is illustrated in the top portion of Fig. 2. There
the top and the bottom boundaries were set to a constant
temperature and the lateral boundaries were considered
to be adiabatic. The top and the bottom boundaries
simulated the sapphire’s and silver’s top surfaces, respec-
tively. One of the lateral boundaries was located at the
center of the cell while the other was at the sapphire’s
edge. In units of the sample conductivity, we used 86.7,
0.062, 0.72, and 1.18 for the conductivities of the sap-
phire, the air, the O ring, and the HDPE, respectively.

isothermal, T = 0

Sapphire

adiabatic

LT 4 T _sample %

: HD!
Air - »or- WaF:IE iso}ermal,T=1

Sample

r(cm)

FIG. 2. Calculated temperature variation along the sample-
sapphire interface. The top diagram is a schematic drawing of
the approximation of the cell cross section for which the simula-
tion was carried out. The temperature at the top of the sapphire
was set to zero and the temperature at the top surface of the
silver bottom plate was set to one. The bottom figure gives the
temperature deviation AT from the temperature at the sample-
sapphire interface at the cell center. The horizontal dashed line
indicates a temperature perturbation equal to 0.1% of the total
temperature difference across the cell.
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We found that by increasing the width of the HDPE ring
we could decrease the magnitude of the radial gradient
substantially. Without compromising the aspect ratio ex-
cessively, we designed the three cells so that the radial
change in temperature at the sapphire’s bottom surface
from the center of the fluid layer to the HDPE inner la-
teral edge was only about 1 mK when the vertical tem-
perature difference was 1 K. In the bottom part of Fig. 2
we show the radial variation of the temperature at the
sapphire-sample boundary for cell 2.

We prepared 2 kg each of several mixtures by weight
with mass fractions x such that the associated values of ¥
were close to zero. Distilled, deionized water and high-
purity ethanol were used. The concentration was known
within one or two parts in 10*. About 400 cm?® of the
solution was quickly transferred into a heavy-walled Er-
lenmeyer flask, where it was frozen using liquid nitrogen.
The flask was then evacuated for 10 sec to remove
desorbed gases and thawed. This freeze-and-thaw degass-
ing procedure was repeated twice. It was found that this
was adequate to prevent the formation of bubbles at a
later time in the convection cell. About 50 cm? of the de-
gassed mixture was withdrawn with a syringe and slowly
injected into the sample cell via one of two thin Teflon
tubes that were snuggly inserted into two holes 180° apart
at midheight through both the O ring and the HDPE
ring. We expect that the total uncertainty in the concen-
trations, including that due to preferential evaporation
and other effects, does not exceed =0.0005. The concen-
trations and other properties of the mixtures that we used
are listed in Table I. We obtained the density and its
derivatives from Ref. [34], the viscosity from Ref. [35],
and the thermal and mass diffusivity from Ref. [12].

The upper part of Fig. 1 shows the optical components
of the shadowgraph apparatus that was used to visualize
the flow patterns. Those components were accommodat-
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ed in a tall aluminum tube, 135 cm long and 14 cm in di-
ameter, which was attached concentrically to the cover
plate of the cylindrical container. The tube consisted of
two shorter sections of roughly equal length that were
screwed together. The bottom tube contained the light
source, a beam splitter in the form of a thin pellicle, and a
high-quality collimating lens with a focal length of 64 cm.
These parts were used, first, to produce a parallel beam
along the axis of the cylindrical cell and, second, to col-
lect the beam that was reflected from the bottom of the
cell, which had been modified by the lateral index-of-
refraction variations in the fluid.

The light source was a red (650-nm) light-emitting
diode [36] (LED) behind a 45-um-diam pinhole. The
front surface of the LED’s plastic enclosure from which
the beam emerged was machined flat at a plane that was
very close to the glowing semiconducting region. The
pinhole was glued to the surface above the emitting re-
gion, but in a location that avoided the lead. This
pseudo-point-source was positioned at the focal point of
the collimating lens as viewed by the beam splitter. After
reflection of the light beam from the bottom plate, the
image of the source was centered in a small circular hole
0.1 cm in diameter lying in the focal plane of the col-
limating lens above the beam splitter. This aperture
served as a spatial filter to eliminate the light reflected
from various glass-sapphire-fluid-air interfaces in the ap-
paratus, which were inclined at small angles relative to
the bottom plate. The light passing through this hole
reached the camera system located inside the top tube.

The camera system consisted of a black and white
charge coupled device (CCD) camera (Sony model SSC-
M354) and a 50-mm focal length f/1.4 Nikon camera
lens, both of which could be translated independently
along the common axis of the top and bottom tubes. The
distance between the camera and the lens was adjusted to

TABLE I. Parameters of the experimental runs in cells 1, 2, and 3 (see Table III below). Column 2
gives the mass fraction x of ethanol for each mixture. These values are subject to errors of +0.0005.
The third column gives the mean temperature with AT=AT,. The fourth, fifth, and sixth columns give
the Prandtl number o, Lewis number .£, and separation ratio ¥. Here o and .L are based on Refs. [12]
and [35] and ¥V was determined from Egs. (5.1) and the values of x. The measured (dimensionless) Hopf
frequency for ¥ <0 is given in column 7. Columns 8 and 9 give AT at the onset of Rayleigh (AT.,) and

of Soret (AT,) convection, respectively.

Cell X T (O o 10°L 10y (0] AT, (°C) AT, (°C)
2 0.280 28.32 20.3 8.3 —1.45 2.40 3.87

2 0.280 32.35 17.8 9.5 —1.25 2.23 3.26

2 0.284 28.29 20.5 8.0 —0.73 1.62 3.82

2 0.284 32.34 18.0 9.1 —0.62 1.37 3.23

2 0.286 28.27 20.6 7.8 —0.37 1.33 3.80

2 0.286 32.33 18.1 8.9 —0.31 1.21 3.22

2 0.287 28.25 20.6 7.8 —0.19 0.87 3.78

2 0.287 32.31 18.9 8.7 —0.15 0.72 3.20

2 0.288 27.80 20.6 7.7 —0.01 3.82 3.38
2 0.290 27.15 21.4 7.3 0.35 3.80 2.09
2 0.292 26.90 21.6 7.1 0.72 3.79 1.59
1 0.292 26.44 21.6 7.1 0.73 1.57 0.66
2 0.294 26.86 21.7 7.0 1.09 3.77 1.51
3 0.294 27.60 18.8 8.1 1.07 10.8 2.90
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set the magnification of the image. The camera-lens sys-
tem was translated jointly so as to image a plane (see Fig.
1) located a distance Az below the focal point of the col-
limating lens onto the CCD element. Thus the spatial
distribution of the light intensity in that plane could be
measured.

III. DATA ANALYSIS

A. Analysis of the shadowgraph measurements

The shadowgraph technique [32,37,38] used to visual-
ize the convective flow patterns provides a signal related
to the vertical average of the lateral refractive-index vari-
ation in the cell and thus the images are the net result of
contributions from lateral temperature and concentration
variations. As indicated in Fig. 1, the light beam passed
twice vertically through the cell, being reflected by the
bottom plate. The signal was generated by imaging a
plane a distance Az below the focal plane of the collimat-
ing lens onto the CCD element at the camera. This is
equivalent to viewing the shadowgraph signal, which, in
the absence of the collimating lens, would have formed at
an optical distance

Z, =ZO + f(fA—-zAz )

from the cell. Here z3=~18 cm is the optical distance
from the sample to the collimating lens, including correc-
tions for the refractive indices of the water and windows
in the optical path. For the present experiments, Az was
3.99 cm, giving z; =980 cm.

We took images containing my=256X256=65536
pixels and covering the entire circular cell. The light in-
tensity at each pixel location was digitized so as to be de-
scribed by 1 byte. A background image T,(x) was taken
at a value of AT well below the critical value AT, for the
onset of convection (x is the horizontal position vector
within the cell). Then AT was increased above AT, and
an image I(x,r) was taken at each of many values of

r=R/R. .

(3.1

Typically, before each image at a new r value the system
was permitted to equilibrate for about 2 h. The shadow-
graph signal is defined to be

I(x,r)=[T(x,r)—T(x)]/To(x), (3.2)

where the division on the right-hand side corresponds to
pixel-by-pixel division of the image matrices. Two gray-
scale images of I(x,r), one each for »=1.05 and 0.68,
both for ¥=0.0073 (x =0.292), are shown in Figs. 3(a)
and 3(d).

In order to reduce effects associated with the sidewall
and to obtain a quantitative measure of the flow ampli-
tudes, the signal was processed further. We chose an ori-
gin at the cell center and computed the mean and the
variance P of the part inside a diameter equal to 85% of
the original image width, which included m =36 621 pix-
els. Pixel values outside this region were set equal to zero
and the mean was subtracted from the pixel values within
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it. Gray-scale images of the results are shown in Figs.
3(b) and 3(e). To further reduce the contribution from
experimental noise to the analysis of the shadowgraph
signal, we worked in Fourier space. The images were
Fourier transformed and the transform was normalized
by dividing the real and imaginary parts by
(mom)!/2=48990. This normalization ensured that the
total power in the Fourier transform was equal to the
variance P of the selected central area of the original im-
age (i.e., Parseval’s theorem [39] still holds). For the ex-
amples from cell 1 given in Figs. 3(b) and 3(e) we obtained
P=0.217 and 1.15X107%, respectively (see the first row
of Table II). Gray-scale images of the center 4 X4 por-
tions of the structure factors S(q,r) (the square of the
modulus of the Fourier transform) of the images in Figs.
3(b) and 3(e) are shown in Figs. 3(c) and 3(f).

We considered two methods of analysis of the structure
factor. First we computed an azimuthal sum S(q,r) of
S(q,7). Examples for »r=1.05 [Fig. 3(b)], 0.76, and 0.59
are shown in Fig. 4. The main peaks are quite narrow
and we summed the four g values located closest to the

FIG. 3. Gray-scale images of convection patterns from cell 1
for ¥=0.0073 (x =0.292). (a) and (d) are images of the entire
cell for r=1.05 and 0.68, respectively. (b)and (e) are the por-
tions used in the Fourier analysis. (c) and (f) are the corre-
sponding gray-scale representations of the center %X% portions
of the structure factors of the images in (b) and (e).
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FIG. 4. Azimuthal sums of the structure factors of the im-
ages for cell 1 taken at ¥=0.0073 (x=0.292) and (a) »r=1.05,
(b) =0.76, and (c) »=0.59.

largest peak near g =3 to get estimates of the power P,
under the peak. A few examples are given in Table II.
Comparing P, with P, one sees that, at »r=1.05, about
half the power is located in the fundamental peak. The
remainder is contained primarily in higher harmonics,
which are caused primarily by nonlinearities of the sha-
dowgraph method and saturation of the image-
acquisition system. For »=0.76, P, also corresponds to
about half the total power (which is over three orders of
magnitude smaller than for » =1.05), but in this case the
remainder is due primarily to broadband instrumental
noise originating in the camera. As r decreases further,

TABLE II. Results of several types of analyses of the struc-
ture factors. These examples are for cell 1 and ¥=0.0073 (see
the text for details).

r 1.05 0.76 0.68 0.59

P 0217 2.18X10™* 1.15X10™* 8.2X107°
P, 0.103 1.30X107* 4.0X107° 1.0X107°
Py 0.070 6.2X107° 2.0X107°  4.8X107°
Py 0022 6.1Xx107° 1.8X107°  4.4X107°¢
6 51.1 140.3 51.5 51.5
6y 140.7 51.8 140.2 140.5
q? 2.97 2.92 2.86 2.80
q5 3.02 2.90 2.88 2.79
PP 0.047 5.7X107° 1.8X107°  4.2X107°
Py 5.3X1073 1.6X107°  4.1X107°
6 49.0 140.3 52.0 51.7
6> 52.4 140.3 140.6
q? 2.98 2.92 2.84 2.79
q5 2.89 2.88 2.80
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the fraction of the power contained in the signal de-
creases also. At r=0.59 it is only about 12% of the total,
but still measurable with good precision.

The part of the instrumental noise with wave numbers
close to the roll wave number will of course contribute to
P,. In order to reduce it further, we identified the loca-
tions of the two pairs of main peaks in S(q,r) for each
image [see Figs. 3(c) and 3(f)] and summed the 5X5 or
3 X3 pixel values in their immediate vicinity to obtain the
power estimates P>’ and P*, respectively. The latter
method also permitted a determination of the angles 6,
and 0, [measured counterclockwise from the right-
pointing horizontal axis labeled g, in Figs. 3(c) and 3(f)]
of the peak locations and the corresponding wave num-
bers g, and q,. This determination was done by comput-
ing the first moment of S(q,r) over the 5X5 or 3 X3 pix-
els. Some examples are again given in Table II. It is ap-
parent that the sum P\’ + P}’ accounts for most of the
power P,, except in the case of the image in Fig. 3(c),
where P{*) obviously missed a portion of the broadened
peak. For well equilibrated square patterns throughout
the Soret regime, we found P{® + P to be an excellent
estimate of the total power in the signal of interest. After
subtracting a background determined below the onsei of
convection, we used it for the results given in Sec. VL.

The data in Table II also show that the angle |6,—6,|
between the two wave vectors is very close to 90°. Within
experimental error the two wave numbers ¢, and g, are
equal to each other. In the Soret regime, P, and P, are
about equal. We conclude that the patterns quantitative-
ly correspond to squares rather than to rhombi such as
those observed in chemical patterns and in convection in
nematic liquid crystals [40-43].

B. Relation to the refractive index

For a sufficiently weak convection pattern that causes a
refractive-index deviation

én(x,z,r)=bn(x,r)f(z) (3.3)

within the fluid mixture, the linear shadowgraph signal
I(x,r) is related to 6n by [37,38,44]

I(x,r)=—A{f(2)),V%n(x,r) . (3.4)

Here ( ), denotes an average over z. The function f(z)
in Eq. (3.3) may be chosen so that { f(z)),=1. For a su-
perposition of spatially periodic refractive-index varia-
tions of uniform wave number g, the signal then is

I(x,r)=Aq*n(x,r) . (3.5)

For our experimental setup of a nearly parallel beam
passing twice vertically through the cell,

A=2dy(z,)z, , (3.6)

where d is the cell thickness, y(z,) is a factor less than
unity, which may be calculated on the basis of physical
optics [38], and z; is the viewing distance given by Eq.
(3.1). Table III gives values of A q? and y together with
some of the other relevant parameters for each cell.
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TABLE III. Parameters for the three cells. A was computed
for z; =980 cm and g =7/d. The onset of Rayleigh convection
at AT,, is for x=0.292 (the value for cell 3 is estimated).
Values for s, and s, are for x =0.292 and T=27°C.

Cell
Parameter 1 2 3
d (cm) 0.329 0.240 0.160
1% 0.952 0.857 0.448
10~ %A g? 5.60 6.91 5.42
AT, (K) 1.57 3.79 (12.8)
10’54 (K) 0.919 2.23 7.49
10%s, 3.28 7.92 26.7

Knowing A g2 Eq. (3.5) gives the vertical average of the
refractive-index variation 8n(x,r), which may be com-
pared with the prediction of a theoretical model.

IV. PREDICTIONS OF THE TEN-MODE MODEL

A. Solution of the model and relation to physical variables

The nonlinear properties of convection in binary mix-
tures with positive separation ratios were considered by
Miiller and Liicke (ML) [45]. These authors derived a
Lorenz-like model based on a Galerkin truncation, which
retained the amplitudes of ten modes and could represent
a pattern of either straight rolls or of squares. The model
incorporates physically realistic impermeable boundaries,
but retains unrealistic slip boundary conditions at the top
and bottom of the sample. It was evaluated for the as-
sumption that the wave number g of the modes is equal to
the critical wave number g., for ¥ =0, whereas in the
physical system the wave number depends on the Ray-
leigh number and near onset is smaller than g,,. Because
of the boundary conditions and the choice for ¢, we ex-
pect at best semiquantitative agreement with experiment
even if the mode truncation is adequate.

We are concerned only with the stationary states, i.e.,
with the fixed points of the model and not with the time
dependence of the modes. ML treat the problem in terms
of two scalar fields 6(x,z) and {(x,z), where x is the hor-
izontal position vector (x,y) and z is the vertical coordi-
nate (the use of x for position and concentration should
not cause confusion because the meaning is clear from
context). Here 0 is the deviation of the local temperature

from the pure-conduction profile and
{(x,z)=c(x,z)—VO(x,z) , 4.1)

with ¢(x,z) the deviation of the mass-concentration field
from its pure conduction profile. In the theory, 6 was
scaled by

KV
318d3

Similarly, ¢ was scaled by

5= (4.2a)
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o = KV
¢ Bgd®
with B, and S, given by Egs. (1.3a) and (1.3b). Thus, in

physical units the temperature and concentration devia-
tions from the conduction profiles are given by

ZSGBI /BZ 5 (42b)

0(x,z)=s5,0(x,z) (4.3a)

and

t(x,z)=s.c(x,z) . (4.3b)

From Eq. (1.1), we have s,=AT/R. We estimate s,
from the measured onset at AT =AT,, of Rayleigh con-
vection where R =~1708. Even though there is no bifur-
cation at that point, this onset is well defined by Nusselt
number measurements like those presented below in Sec.
VI A and Fig. 12. The ratio 8,/3, can be taken from in-
dependent measurements [34]. Over the range of interest
here, it is to a very good approximation independent of
concentration and equal to 0.00357 K~!. Values of
AT,y sgy, and s, for our three cells and for x =0.292 at a
mean temperature of 27°C are given in Table III. Over
the range of the mean temperatures of our experiments s
and s, may be regarded as constant for our purpose.

In terms of the modes retained in the model, 6(x,z)
and {(x,z) are given by Eqgs. (2.4d) and (2.4e) of ML. The
shadowgraph signal is determined by the vertical aver-
ages 6(x) and §(x) of these modes. These averages are
given by

V_ ~ P
0(x)= &T{%[GIOICOS(‘]’C )+ 6g15c08(gy )] (4.4)
and
E(x)=2[E,poc0s(gx )+ Eyocos(gp)] . (4.5)

For a square pattern, we have @101=§011 and &;00=Co10
and henceforth we will refer to them with unsubscripted
symbols. For their contribution to the vertical average of
the refractive index we then have

dn(x)=a[cos(gx)+cos(gy)] , (4.6)
with

a= 4‘;2 (ngse+¥n,s, o+ 2nz,sc§ , 4.7)
where

ngz=(3n /3T )p, (4.8a)
and

n,=(0n/3x)pr - (4.8b)

From the measurements by Kolodner, Williams, and Moe
[12] (KWM) we have nz=—2.45X 107 K~! and
n,=0.053 for x =0.292 and T'=27°C. Over our range of
x and T these may be regarded as constant.

The mode amplitudes needed to calculate a have been
derived from the ten-mode model of ML only for the case
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4=4.0=7/V2,

where g, is the critical wave number at the onset of con-
vection for ¥=0 and for slip boundary conditions. In
that case, they are related to the variables in the model by
[Eq. (2.6a) of ML]

. R
6=—2y, (4.92)
g
and
. 2V2R,
;=—U,, (4.9b)
g
with
~ 6
Ro=21- (4.9c)
ch
and
gi=qh+m" . (4.9d)

The stationary solutions of the model that correspond to
a square pattern are given by [Eq. (3.2g) of ML]

1+4Xx2/(37)
Y, =r X, (4.10a)
1+[2—250b /(97)1X?
and
L/2—8X%/3
Ulz\y_T——_——z_Yl . (4.10b)
L2/6+2X?

Here X, is given by the positive root of the cubic equa-
tion in X2 [Eq. (3.2b) of ML]

X%+a,Xt+a, X3 +a,=0. (4.10¢)
We do not reproduce the coefficients a; because they are
somewhat complicated, but they are given explicitly by
Egs. (3.2¢)-(3.2e) of ML. To evaluate Egs. (4.10), we also
need

r(1+‘I’)—*5@

4.11
27 ( a)

n=o

and

b=4x2/g?. (4.11b)
For our mixtures, a representative value of the Prandtl
number is o0 ~21.6. We have now summarized all the in-
formation necessary to calculate the experimentally
measurable refractive-index variation 6n(x,r) and to
compare the variance of V28n(x)
P=a%* (4.12)
with the experimental measurement of (P, +P,) or of P,.
The other measurable quantity that is predicted by the
model is the Nusselt number V. It is given by

N—1=8,Z/r . (4.13a)

Here S| =2 for slip boundary conditions. For squares, Z
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is given by

Z=2X,Y, . (4.13b)

For nonslip boundary conditions, .S; depends upon o and
for our mixtures should be [46] near 1.4. However, in the
physical system it is known to depend on the lateral ex-
tent of the sample cell [33] and it is best determined from
a fit to the data at a relatively large value of r where,
however, the flow pattern still consists of squares. The
measurements given in Sec. VI A yield S;=1.30, in re-
markably good agreement with the theory [46].

B. Prediction for the refractive index

There are two contributions to the refractive-index
variation. One comes from the temperature field 6 and
the other from the concentration field ¢ ={+W¥6. In or-
der to see the relative sizes of the contributions, we con-
sider the case of a square pattern and write

=0, cos(gx )+cos(gy)] (4.14)
and

¢ =¢y[cos(gx)+cos(gy)] . (4.15)
Then

0y=(4V2/m)8 (4.16)
and

2o=2E+4V2/m)¥0 . 4.17)

The amplitudes ¢, and @0 are plotted in Fig. 5 as a func-
tion of r for the particular set of parameters ¥ =0.0073,
L=0.0071, and o =21.6, which is typical of the experi-
ments. At this level, where the fields are still dimension-
less, both seem to be about equally important for
r $0.75. In this range, ¢ =~ since ¥ is small. At larger
r, the temperature mode dominates.

In order to see the actual contributions to the refrac-
tive index, we computed the physical amplitudes

flo=n4540, (4.18)
and
f,=n,s.2 , (4.19)
o1.5¢
<D
©
c
©
<805
0 . . : 2o
02 04 06 08 1

R/ Rgo

FIG. 5. Amplitudes 8, (solid line) and ¢, (dashed line) of the
two dimensionless fields that contribute to the refractive-index
variation. The example is for ¥=0.0073, .L=0.0071, and
o=21.6.
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FIG. 6. Contributions fi, (dashed line) and #, (dash-dotted
line) to the refractive-index amplitude of cell 1 for ¥=0.0073,
L£=0.0071, and 0 =21.6. The solid line is their sum and gives
the total refractive-index amplitude.

which yield the refractive-index field

dn(x)=(R,+A,)[cos(gx)+cos(gy)] . (4.20)

Note that fiy+ 7, =a with a given by Eq. (4.7). The am-
plitudes #, and 7, are shown in Fig. 6 as dashed and
dash-dotted lines. Since n; (and thus fig) is negative and

n, is positive and since the temperature and concentra-

tion fields are in phase when ¥ >0, we see that the two
fields contribute with opposite signs and similar magni-
tudes when R is small. Thus the actual signal visible in
the experiment is the relatively small sum of the two con-
tributions of opposite sign, which is shown as a solid line
in Fig. 6. As R approaches R, the temperature field
dominates. At small 7, the model predicts that the sha-
dowgraph signal should vanish at a value of r above r,
where the two contributions have the same magnitude.

V. RESULTS AT NEGATIVE ¥

The measurements of ¥ as a function of x by Ko-
lodner, Williams, and Moe [12] cover a wide range of pa-
rameters and for ¥ not too close to zero are definitive.
However, the present work is for ¥ very close to zero
where the physical phenomena vary extremely rapidly
with W. For the interpretation of our data it is necessary
to know W(x ) with greater precision than can reasonably
be obtained from measurements by conventional tech-
niques [12]. Thus we used a measurement of one of the
physical properties, which varies rapidly with ¥ near
¥ =0 and is predicted accurately by theory to provide a
calibration of the relationship between ¥ and x in the
range of interest. Specifically, we measured the Hopf fre-
quency over a range of concentrations for ¥ just below
zero and from it and the prediction [18-20,22,47] in-
ferred W(x). The data are readily extrapolated to the
slightly positive values of ¥, which are of interest in the
rest of this work.

Figure 7 shows shadowgraph images for x =0.286 and
cell 2 (d =0.240 cm). They were taken at the times (in
units of #,=57 s) indicated in each figure after
€=AT/AT,—1 was raised from —0.001 to +0.001.
From the early images it can be seen that the pattern

FIG. 7. Shadowgraph images during the transient leading to
traveling-wave convection for negative W after € was raised
from —0.001 to +0.001. This run is for x =0.286, cell 2 with
d=0.240 cm, and T=28.3°C (¥=—0.0037). The number in
each image corresponds to the time, in units of ¢,, that elapsed
since € was raised. Time series of the signal were taken at the
locations shown in the top left image.

grows spontaneously, presumably from fluctuations [33],
in the sample interior and that its growth is not initiated,
for instance, by forcing due to the sidewall or other inho-
mogeneities [32,33,48,49]. Although not evident from
the images, the patterns that formed consisted of travel-
ing convection rolls. As can be seen, they were spatially
disorganized. In the top left image, five locations labeled
a—e are identified at which time series of the shadow-
graph intensity were acquired. These time series are
shown in Fig. 8 (each time sequence was scaled differently
so that all of them might be shown in the figure with
comparable amplitudes). At each location, the signal was
oscillatory and had an amplitude that grew in time. Fit-
ting the data over time intervals corresponding to about
three periods to the function

I=1,+1,sin(wt+¢)exp(st)

yielded values of @ as a function of time. At early times,
when the amplitudes were small, all five locations gave
the same result for w. The data for locations @ and ¢ are
shown in Fig. 9. They show that, for times less than
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FIG. 8. Shadowgraph signals corresponding to the five loca-
tions shown in the top left image of Fig. 7. Each signal is scaled

differently so that they all become discernable in the same
figure.

about 300¢,, w is independent of time and thus of signal
amplitude. For larger times, nonlinear effects influence w
and, as expected from measurements at more negative V¥,
® decreases with increasing amplitude. The early time
results determine the Hopf (i.e., linear) frequency within
better than 1%. For the particular case shown in Figs.
7-9, the result was w=1.33 as shown by the horizontal
line in Fig. 9.

Figure 10 shows the theoretical result [18-20,22,47]
for w as a function of ¥. Having determined o from the
experiment, it is a simple matter to determine ¥ from this
curve. The results for W(x) corresponding to the four
concentrations x =0.287, 0.286, 0.284, and 0.280 at a
mean temperature 7 =28.3°C are shown in Fig. 11(a) as
solid circles. Also shown are the results at 30°C of
KWM. The solid and dashed curves are Eq. (10) of
KWM, evaluated for 28°C and 30°C, respectively. The
temperature dependence suggested by these two lines is
slight and clearly there is good overall agreement be-
tween the two sets of measurements.

Figure 11(b) gives an expanded view of the range of the
new data. Here the solid and open symbols are our re-
sults for T=28.3°C and 32.3°C, respectively. For refer-
ence, we show as a dash-dotted line the relationship given

b
=2 I o °
135} |
2 ° ° o ®
[ e ¥
= ® O g ° ® o P o8
Qo P Ye) ]
L o13f 1
8 7 ° %04
=2
(=2}
c
<C
105l . ‘ -
150 200 250 300 350
Time (d%x)

FIG. 9. Dimensionless frequency » as a function of time
measured at locations (a) (solid circles) and (e) (open circles) of
Fig. 7. The mass fraction was x =0.286.
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FIG. 10. Dependence of @ upon ¥ for ¥ below but close to
zero.

by Eq. (10) of KWM for 28°C. We fit the new data to a
linear dependence of ¥ upon x and obtained

Y=—0.5165+1.793x
for T=28.3°C and

(5.1a)

0.1
B
2
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FIG. 11. (a) Separation ratio ¥ as a function of the ethanol
mass concentration x over a relatively wide range of ¥. Open
circles, results from Ref. [12] at 30°C; solid circles, this work at
28.3°C. The solid and dashed lines correspond to Eq. (10) of
Ref. [12], evaluated at 30°C and 28 °C, respectively. (b) Separa-
tion ratio ¥ as a function of the ethanol mass concentration x
for ¥ <0. Open circles, experimental data for T=32.3°C; solid
circles, experimental data for T'=28.3 °C; dashed line, fit to the
data at 32.3 °C; solid line, fit to the data at 28.3 °C; dash-dotted
line, Eq. (10) of Ref. [12] evaluated for T'=28 °C.
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¥=—0.4525+1.571x (5.1b)

for T=32.3°C. These fits are shown by the solid and
dashed lines, respectively, in Fig. 11(b). We used these
results to obtain two values of ¥ for each of the mixture
concentrations that we used in the experiments. We then
linearly interpolated between these two values to get the
value of W at the mean temperature of a particular exper-
iment. The results of this procedure led to the values of
WV quoted in Table I.

On the scale of Fig. 11(b), there is a significant
difference between the new and the old data. In particu-
lar, the value of x at which W passes through zero differs
by about 0.004. This difference is crucial in the interpre-
tation of our results for positive W. It can also be seen
that the fits to the data for the two temperatures pass
through zero at the same concentration, namely, at
x =0.288 06 and 0.288 03. Including possible systematic
errors in our concentrations, we find that W vanishes for

x0=0.2880=£0.0005 , (5.2)

effectively independent of temperature over the rather
narrow temperature range of our experiments. This fact,
and the rather small temperature dependence for ¥ <O,
indicates that non-Boussinesq effects [50] are relatively
unimportant in these mixtures and do not become of
overwhelming importance as ¥ goes through zero.

VI. RESULTS AT POSITIVE ¥

A. Results for the Nusselt number

Figure 12(a) shows results for the Nusselt number for
x=0.292 and T=26.44°C (¥=0.0073, .L=0.007, and
0=21.6, cell 1) on linear scales. The onset of Soret con-
vection in this case is near r=0.4, but N shows a
significant contribution to the heat flux only in the im-
mediate neighborhood of »r =1. In Fig. 12(b) we show the
convective contribution N —1 on a logarithmic scale as a
function of r. Here the solid line is the prediction Eq.
(4.13) of the ten-mode model of ML, with §;=1.30 ad-
justed to fit the data near r =1. The agreement is really
better than might be expected. For instance, close in-
spection of Fig. 12(a) near » ~0.7 (where J is essentially
equal to one) suggests that systematic errors as large as
5X 1074 can occur in the experiment. This level of un-
certainty is indicated in Fig. 12(b) by the horizontal
dashed line. It is apparent that nothing can be learned
about the behavior of the system near the primary bifur-
cation (in this case near » =0.4) from a study of V. This
is entirely consistent with earlier heat-flux measurements
[13,16] at positive W. Nonetheless, the good agreement
between the model and the data displayed in Fig. 12(b) is
noteworthy.

B. Results for the shadowgraph intensity

Much more can be learned from the shadowgraph im-
ages. Figure 13 shows very-high-resolution images from
cell 1 for x =0.292 (¥=0.0073) at the values of r indi-
cated in the upper right corner of each image. They are
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FIG. 12. Nusselt-number measurements for cell 1 and

x=0.292 (¥=0.0073). (a) NV on linear scales; (b) the convective
contribution /'—1 on a logarithmic scale. The solid line in (b)
is the prediction of the ten-mode model [Eq. (4.13)], with S| in
Eq. (4.13a) adjusted to fit the data near R /R ,=1. The dashed
horizontal line gives an indication of the size of possible sys-
tematic errors in N.

representative of many more images and a number of
runs in different cells and at different values of ¥. Typi-
cally, r was stepped in increments of 0.01 from below on-
set and at each value of r the system was allowed to
equilibrate for 70z, (¢z,=107 s), or about 2 h. Thus a typ-
ical run covering the range from r ~0.3 to 1.1 took about
1 week. Even though the time scales for pattern evolu-
tion are very long, the results are to a reasonable approxi-
mation quasistatic. In Fig. 13 it is found that for
r=0.523, no pattern is visually discernable. However, at
r=0.613, a signal is becoming visible. It is evident that
the initial pattern (say, for r =0.613 and 0.700) reaches a
significant amplitude over a large portion of the cell inte-
rior, demonstrating that there is no noticeable sidewall
forcing. Over the entire range of » where a pattern can be
observed, the center of the cell shows a square pattern.
Along the periphery, the pattern is somewhat disordered
and apparently there is some influence of the sidewall on
the spatial variation since the rolls are seen to have their
axes perpendicular to the wall. However, this influence is
different from the wusual sidewall inhomogeneity
[32,33,48,49], which takes the form of thermal forcing
and leads to rolls that have their axes parallel to the wall.
The time scale for pattern evolution was too long in this
parameter range to wait for further evolution of the pat-
terns and we thus do not know whether in time they
would have healed to perfect squares or whether the
boundary conditions at the cell wall would have enforced
rolls perpendicular to the wall.

In the Rayleigh regime (rX 1) the sidewall influence
was soon overwhelmed by the tendency of the system to
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form well-organized rolls. This is shown in Fig. 14. In
the range 1.02 Sr < 1.05, the pattern became periodically
time dependent, as reported by others [14—16]. Beyond
that range, one of the sets of rolls became dominant, as
shown by the example for » =1.074 in Fig. 14. When r
was lowered again, the time-periodic regime was encoun-
tered again (see » =1.031 in Fig. 14), until near »r=1.02
the pattern was once more one of squares, but now
without significant disorder near the sidewalls. As r was
decreased further, nearly perfect squares continued to fill
the entire cell.

The run of Fig. 14 is continued in Fig. 15, but the con-
trast of the images is enhanced so that the more feeble
patterns can be seen. The squares clearly persist down to
r==0.61 and can just barely be seen for » =0.52.

More quantitative information about the pattern am-
plitudes: and wave numbers can be obtained by the
Fourier-transform techniques described in Sec. IIT A.
Using those methods, the total refractive-index powers
P=P{ + P> and the wave numbers of the patterns (see
Sec. IIT) were determined as a function of r. In Fig. 16
we show the results for the wave numbers for cells 1

FIG. 13. Some of the shadowgraph images for a run with
x=0.292 (=0.0073) in cell 1. The value of r is given in the
upper right corner of each image. The data were taken with in-
creasing r. The steps in » were 0.01, and at each step the pattern
was permitted to equilibrate for about 2 h.
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FIG. 14. Continuation of the run illustrated in Fig. 13. After
the point corresponding to the upper left image, r was decreased
in small steps.

(open circles) and 2 (solid circles), both for x =0.292
(¥=0.0073, .L.=0.007, 0 =21.6). Also shown are the
neutral curves for rigid, impermeable boundary condi-
tions, for ¥=0.0073 (solid curve) and for ¥=0 (dashed
curve). We note that above onset there is no theoretical
prediction for g and the value chosen by the system is an
unsolved wave-number-selection problem. For r close to
one, we found that the wave numbers in the experiment
were close to those of a pure fluid. As r was decreased, g
decreased and tended toward the critical wave number
q.(\V) for the mixture. The data for the two cells agree
well, except for » $0.6. In that range close to onset, the
very shallow neutral curve for ¥=0.0073 suggests that
wave-number-selection processes (which determine g for
r>r,) are not very strong and that time constants for
pattern adjustments may be extremely long. Thus, in
that range the data for the thinner cell 2 (which has a
shorter intrinsic time scale #,) are more likely to represent
the true steady state. In any event, it is gratifying that
the experimental data generally tend toward
q.(¥=0.0073)=2.1 as r tends toward 7.

The refractive-index power for three different runs is
shown in Fig. 17. In order to obtain those data from the
images, the shadowgraph sensitivity A g2 [see Eq. (3.5)]
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FIG. 15. Continuation of the run in Figs. 13 and 14. Here
the images are displayed with greater contrast than in Fig. 14.

was computed from the measured wave vectors g such as
those given in Fig. 16. The solid lines are the predictions
of the ten-mode model discussed in Sec. IV. Figure 17(a)
is for ¥=0.0035 and cell 2. For this ¥, the complete
cancellation in the model between the contributions from
the concentration and the temperature field (see Fig. 6)
occurs near r=0.48 and the power below that point is

08 b

r=R/Rg

Wave number q
FIG. 16. Selected wave numbers for cell 1 (open circles) and
cell 2 (solid circles). The data are for x =0.292 (¥=0.0073,
L=0.007, and o=21.6). The solid and dashed lines are the
neutral curves for ¥ =0.0073 and 0, respectively.
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FIG. 17. Refractive-index power as a function of r=R /R_,.
(a) x =0.290, ¥=0.0035, cell 2; (b) x =0.292, ¥=0.0073, cell 1
(images for this run are given in Figs. 13-15); (¢) x=0.292,
¥=0.0072, cell 2. The lines are the predictions of the ten-mode
model.

outside the vertical range of the figure. In the model, the
onset is at 7, =0.454, whereas the data give r,=0.55 (see
Table I). The experimental onset agrees well with the
prediction for the physically realistic impermeable,
nonslip boundary conditions, as will be shown below in
Fig. 19. For r >r, the data fall slightly below the model
prediction, consistent with the difference in r, due to the
different boundary conditions.

Figure 17(b) is for ¥=0.0073 (x =0.292) for the run in
cell 1 and Fig. 17(c) is for ¥=0.0072 (x =0.292) for the
run in cell 2. We find r, =0.42 in both cells, whereas the
model gives r,=0.285. In this case the figure exhibits
more clearly the total cancellation between the concen-
tration and temperature contributions in the model near
r=0.48 because the model predicts a power below that
point which is within the vertical range of the figure. The
data do not show this effect and instead vanish monotoni-
cally very close to the onset predicted on the basis of
nonslip boundary conditions (see Fig. 19 below). We ex-
pect that the cancellation in the model is an artifact that
would disappear if realistic boundary conditions were
used. For cell 2 [Fig. 17(c)] the data in the range
0.55r <1 are again somewhat below the model predic-
tion, consistent with the different onsets. For cell 1 [Fig.
17(b)], the data seem to agree better with the model, but
we believe that this is illusory. For this thicker cell,
equilibration times were longer and we believe that the
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cell-2 data are more likely to correspond to a fully equili-
brated steady state. The overall agreement between the
data and the model predictions is really very satisfying
for all three runs displayed in the figure.

Near onset one would expect all mode amplitudes to
grow in proportion to €!/2, where e=r/r,—1. Thus the
refractive-index power should be given by P=S%e when
€ is small enough. This behavior is not made obvious
with the logarithmic vertical scale of Fig. 17. Thus we
show the power on linear scales in Fig. 18. Since the data
vary over many orders of magnitude, they are plotted five
times, with the vertical scale differing by a factor of 10
each time. All representations except the most expanded
plot show strong curvature. However, the greatest data
expansion shows that the data nearest r, are consistent
with a linear relationship and a finite initial slope S¥.
Roughly, we find S¥~3%x107"* for ¥=0.0035 and
SP~5%10"1% for ¥=0.0073. However, since these re-
sults are based on the few data points that are closest to
the limit of resolution and since they are sensitive to the
precise background correction that is applied, we regard
them to be indicative only roughly of the size of the ini-
tial slope. From the ten-mode model, we find the values
SP=4.5%1071 for ¥=0.0035 and ST=2.4X10"" for
¥=0.0072. We do not expect these values to be realistic
since they are sensitive to the precise cancellation be-
tween the contributions from the temperature and the
concentration modes, but find it encouraging to see that
they are within a couple of orders of magnitude of the ex-
periment. For comparison, the initial slope for the pure
fluid is near 1078, i.e., six orders of magnitude larger than
the measured values. It would be interesting to carry out
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FIG. 18. Refractive-index power P as a function of

r=R /R, on linear scales for cell 2 and (a) ¥=0.0035 and (b)
¥=0.0072. In each plot, the data are shown five times on verti-
cal scales differing by factors of 10. The power was multiplied
by 10", with n =11 (solid circles), n =12 (open circles), n =13
(solid squares), n =14 (open squares), and n =15 (solid dia-
monds).
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FIG. 19. Experimental (symbols) and theoretical (lines)
values of the reduced critical Rayleigh number R./R.,. Open
circle, cell 1; solid circles; cell 2; open square, cell 3. For ¥ >0,
the solid (dashed) line is for £=0.007 (0.009). The Prandtl
number is 0 =21.6.

a weakly nonlinear calculation of S¥ with realistic bound-
ary conditions. This could be done by the methods used
in Refs. [21] and [22], but in practice these papers did not
focus on this particular experimentally accessible param-
eter and do not report the information necessary for the
calculation. Finally, it is interesting to note that P is
linear in € only for € $0.1, as one might have expected.

The values of r,(V¥) determined from data like those
shown in Figs. 17 and 18 are given in Fig. 19. There we
also show the results for ¥ <0 discussed in Sec. V. The
lines are the predictions [18-20,22,47] of linear stability
analysis for rigid, impermeable boundaries. Since the
Lewis number is not known very accurately for these
mixtures, the theoretical result for positive ¥ is given for
L=0.009 (dashed line) as well as for .£L=0.007 (solid
line). Clearly the overall agreement between theory and
experiment is very satisfying.

VII. SUMMARY

We have presented the results of extremely sensitive
measurements on convection in binary mixtures with
values of the separation ratio ¥ close to zero. For all of
our work, the Lewis number .£ was close to 0.007 and the
Prandtl number o was near 20. The apparatus used for
this purpose is described in some detail in Sec. II. Both
Nusselt-number measurements and shadowgraph flow
visualizations of convection patterns were done. The
Nusselt-number measurements had a resolution of
0.05%. In Sec. III we describe the quantitative shadow-
graph method, which enabled us to determine the vertical
average of the amplitude of the refractive-index field.
The method had the resolution to detect sinusoidal varia-
tions in the refractive index with an amplitude of one
part in 10°,

The Hopf frequency » was measured as a function of
concentration x for ¥ below but close to zero. By com-
paring the experimental frequency with the prediction
[18-20,22] w(W¥) of linear stability analysis, the relation
between W and x was determined. It could be readily ex-
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trapolated to the small values of ¥ >0, which are of in-
terest in the present paper. These results are summarized
by Egs. (5.1).

In order to facilitate a comparison of our shadowgraph
measurements at positive ¥ with the ten-mode Galerkin
truncation [45] of ML, we wrote down explicitly the rela-
tionship between the scaled mode amplitudes Y and U of
the model and the amplitude of the refractive-index vari-
ation 8n, which is determined in the experiment. This is
done in Sec. IV. It turns out that the temperature and
the concentration variations contribute to n, and thus to
the shadowgraph signal, with opposite signs. Over most
of the range R, <R S R, this leads only to a partial can-
cellation and some signal remains in the experiment.
However, according to the model there is complete can-
cellation at a particular value of R >R_, which for
¥=0.0073 is near 0.5R_,. This phenomenon is not ob-
served in the experiment and it is interesting to enquire
whether it may be a consequence of the unrealistic slip
boundary conditions that had been used in the theory.

At positive ¥, we made high-resolution measurements
of the Nusselt number n(R). As expected from theory
and on the basis of previous experiments [13,14,16], these
data revealed information about the system only quite
close to the Rayleigh onset at R 4~~1708 even though the
primary bifurcation was at R (¥)=~0.4R_, for the value
¥=0.0073 used in the experiment. The Nusselt number
gave the appearance of a slightly rounded, i.e., imperfect,
bifurcation at R, and was within the experimental reso-
lution of 5X10™* equal to unity for R <O0.9R,,.
Nonetheless, it is noteworthy that n(R) agreed well in
the rounded region with the prediction of the model of
ML.

The most important results of this paper are measure-
ments of the shadowgraph patterns and intensities for
0<W¥=0.011. We were able to visualize the flow pat-
terns and to measure the amplitudes of the associated
refractive-index variations even in the immediate vicinity
of R, where the signal is extremely feeble and where pre-
vious experiments [14—-16] had been unable to visualize
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the pattern. In agreement with a prediction by Clune and
Knobloch [21], we found stable squares close to onset
over the range of ¥ covered by our experiments. There
was no indication of a range of R close to R, where rolls
are stable, as had been suggested by the stability analysis
[45] of the ten-mode model of ML. From the shadow-
graph signal we computed the power of the refractive-
index variation (i.e., the square of the modulus of the
Fourier transform) as a function of R and compared it
with predictions based on the ML ten-mode model. The
agreement is very satisfactory, especially when it is con-
sidered that the measured power varies by about six or-
ders of magnitude as R changes from just above R_ to
R, and that the model is based on unrealistic slip bound-
ary conditions. The data make it possible to determine
R, /R, with a resolution of approximately 0.05. Within
that uncertainty, the bifurcation line R.(¥) is in excellent
agreement with the predictions of linear stability analysis
based on realistic rigid, impermeable boundary condi-
tions [18-20,22]. An accurate determination of the
wave numbers of the patterns could be made only when
R /R, exceeded its critical value by about 0.1. The re-
sults were consistent with a wave number starting at
q.(¥) for R =R_, but increasing toward the value g =~3
characteristic of the pure fluid as R increased toward R .
In the Rayleigh regime above R, we observed the oscil-
latory pattern associated with the transition from squares
to rolls, which has been reported by others [14—16] and
is reproduced by ML’s ten-mode model, but we did not
study this in any detail.
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FIG. 13. Some of the shadowgraph images for a run with
x=0.292 (¢=0.0073) in cell 1. The value of r is given in the
upper right corner of each image. The data were taken with in-
creasing r. The steps in r were 0.01, and at each step the pattern
was permitted to equilibrate for about 2 h.
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FIG. 14. Continuation of the run illustrated in Fig. 13. After
the point corresponding to the upper left image, r was decreased
in small steps.



FIG. 15. Continuation of the run in Figs. 13 and 14. Here
the images are displayed with greater contrast than in Fig. 14.



FIG. 3. Gray-scale images of convection patterns from cell 1
for ¥=0.0073 (x =0.292). (a) and (d) are images of the entire
cell for r=1.05 and 0.68, respectively. (b)and (e) are the por-
tions used in the Fourier analysis. (¢) and (f) are the corre-
sponding gray-scale representations of the center } X L portions
of the structure factors of the images in (b) and (e).



FIG. 7. Shadowgraph images during the transient leading to
traveling-wave convection for negative W after € was raised
from —0.001 to +0.001. This run is for x =0.286, cell 2 with
d=0.240 cm, and T=28.3°C (W= —0.0037). The number in
each image corresponds to the time, in units of ¢,, that elapsed
since € was raised. Time series of the signal were taken at the
locations shown in the top left image.



